Computational Modeling and Simulation Study of Electronic and Thermal Properties of Semiconductor Nanostructures
نویسندگان
چکیده
Paul, Abhijeet, Purdue University, December 2011. Computational modeling and simulation study of electronic and thermal properties of semiconductor nanostructures. Major Professor: Gerhard Klimeck. The technological progress in dimensional scaling has not only kept Silicon CMOS industry on Moore’s law for the past five decades but has also benefited many other areas such as thermoelectricity, photo-voltaics, and energy storage. Extending CMOS beyond Si (More Moore, MM) and adding functional diversity to CMOS (More Than Moore, MTM) requires a thorough understanding of the basic electron and heat flow in semiconductors. Along with experiments computer modeling and simulation are playing an increasingly vital role in exploring the numerous possibilities in materials, devices and systems. With these aspects in mind the present work applies computational physics modeling and simulations to explore the, (i) electronic, (ii) thermal, and (iii) thermoelectric properties in nano-scale semiconductors. The electronic structure of zinc-blende and lead-chalcogenide nano-materials is calculated using an atomistic Tight-Binding model. The phonon dispersion in zinc-blende materials is obtained using the Modified Valence Force Field model. Electronic and thermal transport at the nano-scale is explored using Green’s function method and Landauer’s method. Thermoelectric properties of semiconductor nanostructures are calculated using Landauer’s method. Using computer modeling and simulations the variation of the three physical properties (i-iii) are explored with varying size, transport orientation, shape, porosity, strain and alloying of nanostructures. The key findings are, (a) III-Vs and Ge with optimized strain and orientation can improve transistors’ and thermoelectric performance, (b) porous Si nanowires provide a lucrative idea for enhancing the thermo-
منابع مشابه
Behavioral Modeling and Simulation of Semiconductor Devices and Circuits Using VHDL-AMS
During the past few years, a lot of work has been done on behavioral models and simulation tools. But a need for modeling strategy still remains. The VHDL-AMS language supports the description of analog electronic circuits using Ordinary Differential Algebraic Equations (ODAEs), in addition to its support for describing discrete-event systems. For VHDL-AMS to be useful to the analog design ...
متن کاملComputational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites
Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...
متن کاملElectronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field
Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...
متن کاملAb-initio study of Electronic, Optical, Dynamic and Thermoelectric properties of CuSbX2 (X=S,Se) compounds
Abstract: In this work we investigate the electronic, optical, dynamic and thermoelectric properties of ternary copper-based Chalcogenides CuSbX2 (X= S, Se) compounds. Calculations are based on density functional theory and the semi-classical Boltzmann theory. Computations have been carried out by using Quantum-Espresso (PWSCF) package and ab-initio pseudo-potential technique. To estimate the e...
متن کاملExploration of the adsorption of caffeine molecule on the TiO2 nanostructures: A density functional theory study
The first principles were calculated to study the adsorption behaviors of caffeine molecules on the pristineand N-doped TiO2 anatase nanoparticles. Both oxygen and nitrogen in the caffeine molecule can reactstrongly with TiO2 nanoparticle. Thus, the binding sites were located on the oxygen or nitrogen atom ofthe caffeine, while the binding site of the TiO2 nanoparticle occurs ...
متن کامل